Bringing Rad52 foci into focus

نویسندگان

  • Peter H. Thorpe
  • David Alvaro
  • Michael Lisby
  • Rodney Rothstein
چکیده

The Rad52 protein has pivotal functions in double strand break repair and homologous recombination. The activity of Rad52 is often monitored by the subnuclear foci that it forms spontaneously in S phase or after DNA damage (Lisby et al., 2001). In mammals, the functions of yeast Rad52 may be divided between human RAD52 and the tumor suppressor BRCA2 (Feng et al., 2011). The full host of molecular players that govern Rad52 focus formation and maintenance was not well known when we initiated our screen. Using a high-content, image-based assay, we assessed the proportion of cells containing spontaneous Rad52-YFP foci in 4,805 viable Saccharomyces cerevisiae deletion strains (Alvaro et al., 2007). Starting with 96-well arrays of a deletion strain library , we created hybrid diploid strains (homozygous for the deletions) using systematic hybrid loss of heterozygosity (SHyLOH; Alvaro et al., 2006). We then manually and sequentially examined each strain using epifluorescence micros-copy for the presence of Rad52-YFP foci. All of our image analysis was performed manually. As is often the case, our screen was published showing only a couple of representative images and providing data tables to summarize the findings. Tomes of data that could not be included in the published paper were relegated to supplemental Excel tables, typical of genome-wide screens. Also, the raw image data were sequestered in the laboratory on DVDs. With considerable help from JCB and Glencoe In 2007, we published the results of a genome-wide screen for ORFs that affect the frequency of Rad52 foci in yeast. That paper was published within the constraints of conventional online publishing tools, and it provided only a glimpse into the actual screen data. New tools in the JCB DataViewer now show how these data can—and should—be shared. Software, we are delighted that the raw data from our Rad52 screen are now freely available online through the JCB Data-Viewer. A new interface within the JCB DataViewer brings presentation and preservation of high-content, multidimen-sional image-based screening data to a whole new level. To facilitate the development of this new interface, JCB required a dataset that was not time sensitive, and we were happy to provide our previously published Rad52 data. In the future , this new interface will be used to present high-content screening (HCS) datasets linked to published JCB papers. Indeed, the first publication of this sort appears in this issue of JCB (Rohn et al., 2011). The presentation of …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes.

We show that the Saccharomyces cerevisiae recombination protein Rad52 and the single-strand DNA-binding protein RPA assemble into cytologically detectable subnuclear complexes (foci) during meiotic recombination. Immunostaining shows extensive colocalization of Rad52 and RPA and more limited colocalization of Rad52 with the strand exchange protein Rad51. Rad52 and RPA foci are distinct from tho...

متن کامل

Rad52 recruitment is DNA replication independent and regulated by Cdc28 and the Mec1 kinase.

Recruitment of the homologous recombination machinery to sites of double-strand breaks is a cell cycle-regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B-type cyclin/CDK1 activity. Induction of the intra-S-phase checkpoint by hydroxyurea (HU)...

متن کامل

In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair.

Assembly and disassembly of Rad51 and Rad52 complexes were monitored by immunofluorescence during homologous recombination initiated by an HO endonuclease-induced double-strand break (DSB) at the MAT locus. DSB-induced Rad51 and Rad52 foci colocalize with a TetR-GFP focus at tetO sequences adjacent to MAT. In strains in which HO cleaves three sites on chromosome III, we observe three distinct f...

متن کامل

Interaction with RPA is necessary for Rad52 repair center formation and for its mediator activity.

Homologous recombination (HR) is a major DNA repair pathway and therefore essential for maintaining the integrity of the genome. HR is catalyzed by proteins encoded by genes of the RAD52 epistasis group, including the recombinase Rad51 and its mediator Rad52. HR proteins fused with green fluorescent protein form foci at damaged DNA reflecting the assembly of repair centers that harbor a high co...

متن کامل

Rad52 forms DNA repair and recombination centers during S phase.

Maintenance of genomic integrity and stable transmission of genetic information depend on a number of DNA repair processes. Failure to faithfully perform these processes can result in genetic alterations and subsequent development of cancer and other genetic diseases. In the eukaryote Saccharomyces cerevisiae, homologous recombination is the major pathway for repairing DNA double-strand breaks....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 194  شماره 

صفحات  -

تاریخ انتشار 2011